Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
BMC Genomics ; 25(1): 394, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649832

RESUMO

BACKGROUND: Untargeted metabolomics and proteomics were employed to investigate the intracellular response of yak rumen epithelial cells (YRECs) to conditions mimicking subacute rumen acidosis (SARA) etiology, including exposure to short-chain fatty acids (SCFA), low pH5.5 (Acid), and lipopolysaccharide (LPS) exposure for 24 h. RESULTS: These treatments significantly altered the cellular morphology of YRECs. Metabolomic analysis identified significant perturbations with SCFA, Acid and LPS treatment affecting 259, 245 and 196 metabolites (VIP > 1, P < 0.05, and fold change (FC) ≥ 1.5 or FC ≤ 0.667). Proteomic analysis revealed that treatment with SCFA, Acid, and LPS resulted in differential expression of 1251, 1396, and 242 proteins, respectively (FC ≥ 1.2 or ≤ 0.83, P < 0.05, FDR < 1%). Treatment with SCFA induced elevated levels of metabolites involved in purine metabolism, glutathione metabolism, and arginine biosynthesis, and dysregulated proteins associated with actin cytoskeleton organization and ribosome pathways. Furthermore, SCFA reduced the number, morphology, and functionality of mitochondria, leading to oxidative damage and inhibition of cell survival. Gene expression analysis revealed a decrease the genes expression of the cytoskeleton and cell cycle, while the genes expression associated with inflammation and autophagy increased (P < 0.05). Acid exposure altered metabolites related to purine metabolism, and affected proteins associated with complement and coagulation cascades and RNA degradation. Acid also leads to mitochondrial dysfunction, alterations in mitochondrial integrity, and reduced ATP generation. It also causes actin filaments to change from filamentous to punctate, affecting cellular cytoskeletal function, and increases inflammation-related molecules, indicating the promotion of inflammatory responses and cellular damage (P < 0.05). LPS treatment induced differential expression of proteins involved in the TNF signaling pathway and cytokine-cytokine receptor interaction, accompanied by alterations in metabolites associated with arachidonic acid metabolism and MAPK signaling (P < 0.05). The inflammatory response and activation of signaling pathways induced by LPS treatment were also confirmed through protein interaction network analysis. The integrated analysis reveals co-enrichment of proteins and metabolites in cellular signaling and metabolic pathways. CONCLUSIONS: In summary, this study contributes to a comprehensive understanding of the detrimental effects of SARA-associated factors on YRECs, elucidating their molecular mechanisms and providing potential therapeutic targets for mitigating SARA.


Assuntos
Acidose , Proliferação de Células , Células Epiteliais , Metabolômica , Proteômica , Rúmen , Animais , Rúmen/metabolismo , Rúmen/efeitos dos fármacos , Acidose/veterinária , Acidose/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Bovinos , Proliferação de Células/efeitos dos fármacos , Ácidos Graxos Voláteis/metabolismo , Lipopolissacarídeos , Doenças dos Bovinos/metabolismo , Proteoma/metabolismo
2.
J Chem Theory Comput ; 20(7): 2820-2829, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38502776

RESUMO

The transferability of force field parameters is a crucial aspect of high-quality force fields. Previous investigations have affirmed the transferability of electrostatic parameters derived from polarizable Gaussian multipole models (pGMs) when applied to water oligomer clusters, polypeptides across various conformations, and different sequences. In this study, we introduce PCMRESP, a novel method for electrostatic parametrization in solution, intended for the development of polarizable force fields. We utilized this method to assess the transferability of three models: a fixed charge model and two variants of pGM models. Our analysis involved testing these models on 377 small molecules and 100 tetra-peptides in five representative dielectric environments: gas, diethyl ether, dichloroethane, acetone, and water. Our findings reveal that the inclusion of atomic polarization significantly enhances transferability and the incorporation of permanent atomic dipoles, in the form of covalent bond dipoles, leads to further improvements. Moreover, our tests on dual-solvent strategies demonstrate consistent transferability for all three models, underscoring the robustness of the dual-solvent approach. In contrast, an evaluation of the traditional HF/6-31G* method indicates poor transferability for the pGM-ind and pGM-perm models, suggesting the limitations of this conventional approach.

3.
Adv Sci (Weinh) ; : e2307940, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38482976

RESUMO

PARP inhibitors (PARPi)-based synthetic lethal therapy demonstrates limited efficacy for most cancer types that are homologous recombination (HR) proficient. To potentiate the PARPi application, a nanocarrier based on 5-azacytidine (AZA)-conjugated polymer (PAZA) for the codelivery of AZA and a PARP inhibitor, BMN673 (BMN) is developed. AZA conjugation significantly decreased the nanoparticle (NP) size and increased BMN loading. Molecular dynamics simulation and experimental validations shed mechanistic insights into the self-assembly of effective NPs. The small PAZA NPs demonstrated higher efficiency of tumor targeting and penetration than larger NPs, which is mediated by a new mechanism of active targeting that involves the recruitment of fibronectin from serum proteins following systemic administration of PAZA NPs. Furthermore, it is found that PAZA carrier sensitize the HR-proficient nonsmall cell lung cancer (NSCLC) to BMN, a combination therapy that is more effective at a lower AZA/BMN dosage. To investigate the underlying mechanism, the tumor immune microenvironment and various gene expressions by RNAseq are explored. Moreover, the BMN/PAZA combination increased the immunogenicity and synergized with PD-1 antibody in improving the overall therapeutic effect in an orthotopic model of lung cancer (LLC).

4.
Theranostics ; 14(2): 819-829, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169486

RESUMO

Purpose: Lower-grade gliomas (LGGs) are a group of infiltrative growing glial brain tumors characterized by intricate intratumoral heterogeneity and subtle visual appearance differences from non-tumor tissue, which can lead to errors in pathologic tissue sampling. Although 5-ALA fluorescence has been an essential method for visualizing gliomas during surgery, its effectiveness is limited in the case of LGGs due to low sensitivity. Therefore, we developed a novel PET/NIR dual-modality image probe targeting gastrin-releasing peptide receptor (GRPR) in glioma cells to enhance tumor visualization and improve the accuracy of sampling. Methods: A prospective, non-randomized, single-center feasibility clinical trial (NCT03407781) was conducted in the referral center from October 21, 2016, to August 17, 2018. Consecutive enrollment included patients suspected of having LGGs and considered suitable candidates for surgical removal. Group 1 comprised ten patients who underwent preoperative 68Ga-IRDye800CW-BBN PET/MRI assessment followed by intraoperative fluorescence-guided surgery. Group 2 included 42 patients who underwent IRDye800CW-BBN fluorescence-guided surgery. The primary endpoints were the predictive value of preoperative PET imaging for intraoperative fluorescence and the sensitivity and specificity of fluorescence-guided sampling. Results: Thirty-nine patients were included in the in-depth analysis of endpoints, with 25 (64.1%) exhibiting visible fluorescence, while 14 (35.9%) did not. The preoperative positive PET uptake exhibited a greater accuracy in predicting intraoperative fluorescence compared to MRI enhancement (100% [10/10] vs. 87.2% [34/39]). A total of 125 samples were harvested during surgery. Compared with pathology, subjective fluorescence intensity showed a sensitivity of 88.6% and a specificity of 88.2% in identifying WHO grade III samples. For WHO grade II samples, the sensitivity and specificity of fluorescence were 54.7% and 88.2%, respectively. Conclusion: This study has demonstrated the feasibility of the novel dual-modality imaging technique for integrated pre- and intraoperative targeted imaging via the same molecular receptor in surgeries for LGGs. The PET/NIR dual-modality probe exhibits promise for preoperative surgical planning in fluorescence-guided surgery and provides greater accuracy in guiding tumor sampling compared to 5-ALA in patients with LGGs.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Receptores da Bombesina , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Estudos Prospectivos , Glioma/diagnóstico por imagem , Glioma/cirurgia , Glioma/patologia , Ácido Aminolevulínico , Tomografia por Emissão de Pósitrons/métodos
5.
Inflammation ; 47(1): 227-243, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37777674

RESUMO

Diabetic kidney disease (DKD) is characterized by macrophage infiltration, which requires further investigation. This study aims to identify immune-related genes (IRGs) in macrophage and explore their potential as therapeutic targets. This study analyzed isolated glomerular cells from three diabetic mice and three control mice. A total of 59 glomeruli from normal kidney samples and 66 from DKD samples were acquired from four kidney transcriptomic profiling datasets. Bioinformatics analysis was conducted using both single-cell RNA (scRNA) and bulk RNA sequencing data to investigate inflammatory responses in DKD. Additionally, the "AUCell" function was used to investigate statistically different gene sets. The significance of each interaction pair was determined by assigning a probability using "CellChat." The study also analyzed the biological diagnostic importance of immune hub genes for DKD and validated the expression of these immune genes in mice models. The top 2000 highly variable genes (HVGs) were identified after data normalization. Subsequently, a total of eight clusters were identified. It is worth mentioning that macrophages showed the highest percentage increase among all cell types in the DKD group. Furthermore, the present study observed significant differences in gene sets related to inflammatory responses and complement pathways. The study also identified several receptor-ligand pairs and co-stimulatory interactions between endothelial cells and macrophages. Notably, SYK, ITGB2, FCER1G, and VAV1 were identified as immunological markers of DKD with promising predictive ability. This study identified distinct cell clusters and four marker genes. SYK, ITGB2, FCER1G, and VAV1 may be important roles. Consequently, the present study extends our understanding regarding IRGs in DKD and provides a foundation for future investigations into the underlying mechanisms.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Animais , Camundongos , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Células Endoteliais/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Glomérulos Renais/metabolismo , Macrófagos/metabolismo
6.
Toxins (Basel) ; 15(9)2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37755963

RESUMO

The yak lives in harsh alpine environments and the rumen plays a crucial role in the digestive system. Rumen-associated cells have unique adaptations and functions. The yak rumen fibroblast cell line (SV40T-YFB) was immortalized by introducing simian virus 40 large T antigen (SV40T) by lentivirus-mediated transfection. Further, we have reported the effects of lipopolysaccharide (LPS) of different concentrations on cell proliferation, extracellular matrix (ECM), and proinflammatory mediators in SV40T-YFB. The results showed that the immortalized yak rumen fibroblast cell lines were identified as fibroblasts that presented oval nuclei, a fusiform shape, and positive vimentin and SV40T staining after stable passage. Chromosome karyotype analysis showed diploid characteristics of yak (n = 60). LPS at different concentrations inhibited cell viability in a dose-dependent manner. SV40T-YFB treated with LPS increased mRNA expression levels of matrix metalloproteinases (MMP-2 and MMP-9), inflammatory cytokines (TNF-α, IL-1ß, IL-6), and urokinase-type plasminogen activator system components (uPA, uPAR). LPS inhibits the expression of tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2), plasminogen activator inhibitor-2 (PAI-2), fibronectin (FN), anti-inflammatory factor IL-10, and collagen I (COL I) in SV40T-YFB. Overall, these results suggest that LPS inhibits cell proliferation and induces ECM degradation and inflammatory response in SV40T-YFB.


Assuntos
Lipopolissacarídeos , Rúmen , Animais , Bovinos , Lipopolissacarídeos/farmacologia , Vírus 40 dos Símios/genética , Fibroblastos , Antígenos Virais de Tumores , Linhagem Celular , Fator X
7.
Epilepsia Open ; 8(4): 1350-1361, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37491869

RESUMO

OBJECTIVE: Seizures are a common clinical presentation in patients with glioma and substantially impact patients' quality of life. Hyperhomocysteinemia is defined as abnormally high serum levels of homocysteine (Hcy) and is reportedly linked to susceptibility to various nervous system diseases. However, it remains unclear whether and how hyperhomocysteinemia and its associated genetic polymorphisms promote seizures in glioma patients. METHODS: We retrospectively reviewed all medical data from 127 patients with malignant gliomas, who underwent initial tumor resection by our team between July 2019 and June 2021 and had preoperative measurements of serum Hcy levels. According to whether they had at least one seizure before surgery, they were divided into the seizure and nonseizure groups. We also detected polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene and measured intratumoral Hcy levels in these patients. RESULTS: Hyperhomocysteinemia was a susceptibility factor for preoperative seizures in glioma patients according to both univariate analyses (P < 0.001) and multivariate logistic regression analyses (OR 1.239, 95% CI 1.062-1.445, P = 0.007). Patients with the MTHFR C677T variant exhibited elevated serum Hcy levels (P = 0.027) and an increased prevalence of preoperative seizures (P = 0.019). Intratumoral Hcy levels were positively correlated with serum Hcy levels (R = 0.231, P = 0.046) and were elevated in patients with hyperhomocysteinemia (P = 0.031), the MTHFR C677T variant (P = 0.002) and preoperative seizures (P = 0.003). High intratumoral Hcy levels, rather than hyperhomocysteinemia or the MTHFR C677T variant, emerged as an independent risk factor for preoperative seizures (OR 1.303, 95% CI 1.015-1.673, P = 0.038). Furthermore, the effects of hyperhomocysteinemia on epileptic susceptibility were reduced to nonsignificance when intratumoral Hcy was controlled to the same level between groups. SIGNIFICANCE: Glioma patients with hyperhomocysteinemia and the MTHFR C677T variant were susceptible to preoperative seizures, suggesting their potential as biomarkers for the management of seizures in glioma patients. The elevation of intratumoral Hcy is a possible mechanism underlying this susceptibility.


Assuntos
Hiper-Homocisteinemia , Humanos , Hiper-Homocisteinemia/genética , Qualidade de Vida , Estudos Retrospectivos , Polimorfismo Genético , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Convulsões/etiologia
8.
J Ethnopharmacol ; 314: 116591, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37146846

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Seabuckthorn Wuwei Pulvis (SWP) is a traditional Mongolian medicine used in China. It is composed of Hippophae rhamnoides (berries, 30 g), Aucklandiae costus Falc. (dry root, 25 g), Vitis vinifera F. Cordifolia (berries, 20 g), Glycyrrhiza uralensis Fisch. (dry root, 15 g), and Gardenia jasminoides J. Ellis (desiccative ripe fruit, 10 g). It is clinically applied in the treatment of chronic cough, shortness of breath and phlegm, and chest distress. Past studies demonstrated that Seabuckthorn Wuwei Pulvis improved lung inflammation and chronic bronchitis in mice. However, the effect of Seabuckthorn Wuwei Pulvis on chronic obstructive pulmonary disease (COPD) in rats and the underlying action mechanism is not fully understood. AIM OF THE STUDY: To evaluate the anti-COPD effect of Seabuckthorn Wuwei Pulvis and investigate whether its ameliorative effect is correlated with the composition of gut microbiota and its metabolites. MATERIALS AND METHODS: The effects of Seabuckthorn Wuwei Pulvis on a COPD rat model were established by exposure to lipopolysaccharide (LPS) and smoking. These effects were then evaluated by monitoring the animal weight, pulmonary function, lung histological alteration, and the levels of inflammatory factors (tumor necrotic factor [TNF]-α, interleukin [IL]-8, IL-6, and IL-17). Furthermore, the serum LPS and fluorescein isothiocyanate-dextran levels were detected by using an enzyme-linked immunosorbent assay and fluorescence microplate reader, respectively. Tight junction proteins (ZO-1 and occludin-1) in the small intestine were detected by performing real-time quantitative polymerase chain reactions and Western blotting to evaluate the intestinal barrier function. The contents of short-chain fatty acids (SCFAs) in the feces of rats were determined by gas chromatography-mass spectrometry. 16S rDNA high throughput sequencing was used to investigate the effect of SWP on the gut microbiota of COPD rats. RESULTS: Treatment with low and median doses of SWP significantly increased the pulmonary function (forced expiratory volume [FEV] 0.3, forced vital capacity [FVC], and FEV0.3/FVC), decreased the levels of TNF-α, IL-8, IL-6, and IL-17 in the lung, and attenuated the infiltration of inflammatory cells into the lung. The low and median doses of SWP shaped the composition of gut microbiota, which increased the abundances of Ruminococcaceae, Christensenellaceae, and Aerococcaceae, increased the productions of acetic acid, propionic acid, and butyric acid, and upregulated the expression of ZO-1 and occludin-1 in the small intestine of COPD rats. CONCLUSION: SWP improved pulmonary functions and inhibited the inflammatory response by shaping the gut microbiota, increasing SCFA production, and strengthening the intestinal barrier function in rats with COPD induced by LPS and smoking.


Assuntos
Microbioma Gastrointestinal , Hippophae , Doença Pulmonar Obstrutiva Crônica , Ratos , Camundongos , Animais , Interleucina-17 , Lipopolissacarídeos/farmacologia , Interleucina-6 , Ocludina , Ratos Sprague-Dawley , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Ácidos Graxos Voláteis
9.
Comput Biol Med ; 159: 106902, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37086661

RESUMO

The investigation of the strong infrared (IR)-active amide I modes of peptides and proteins has received considerable attention because a wealth of detailed information on hydrogen bonding, dipole-dipole interactions, and the conformations of the peptide backbone can be derived from the amide I bands. The interpretation of experimental spectra typically requires substantial theoretical support, such as direct ab-initio molecular dynamics simulation or mixed quantum-classical description. However, considering the difficulties associated with these theoretical methods and their applications are limited in small peptides, it is highly desirable to develop a simple yet efficient approach for simulating the amide I modes of any large proteins in solution. In this work, we proposed a comprehensive computational method that extends the well-established molecular dynamics (MD) simulation method to include an unpolarized IR laser for exciting the CO bonds of proteins. We showed the amide I frequency corresponding to the frequency of the laser pulse which resonated with the CO bond vibration. At this frequency, the protein energy and the CO bond length fluctuation were maximized. Overall, the amide I bands of various single proteins and amyloids agreed well with experimental data. The method has been implemented into the AMBER simulation package, making it widely available to the scientific community. Additionally, the application of the method to simulate the transient amide I bands of amyloid fibrils during the IR laser-induced disassembly process was discussed in details.


Assuntos
Amidas , Simulação de Dinâmica Molecular , Amidas/química , Espectrofotometria Infravermelho/métodos , Proteínas/química , Peptídeos/química , Ligação de Hidrogênio
10.
Front Plant Sci ; 14: 1137434, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860904

RESUMO

SWEET (Sugars Will Eventually be Exported Transporter) proteins, an essential class of sugar transporters, are involved in vital biological processes of plant growth and development. To date, systematical analysis of SWEET family in barley (Hordeum vulgare) has not been reported. In this study, we genome-wide identified 23 HvSWEET genes in barley, which were further clustered into four clades by phylogenetic tree. The members belonging to the same clade showed relatively similar gene structures and conserved protein motifs. Synteny analysis confirmed the tandem and segmental duplications among HvSWEET genes during evolution. Expression profile analysis demonstrated that the patterns of HvSWEET genes varied and the gene neofunctionalization occurred after duplications. Yeast complementary assay and subcellular localization in tobacco leaves suggested that HvSWEET1a and HvSWEET4, highly expressed in seed aleurone and scutellum during germination, respectively, functioned as plasma membrane hexose sugar transporters. Furthermore, genetic variation detection indicated that HvSWEET1a was under artificial selection pressure during barley domestication and improvement. The obtained results facilitate our comprehensive understanding and further functional investigations of barley HvSWEET gene family, and also provide a potential candidate gene for de novo domestication breeding of barley.

11.
J Chem Inf Model ; 63(4): 1351-1361, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36786552

RESUMO

In tauopathies such as Alzheimer's disease (AD), aberrant phosphorylation causes the dissociation of tau proteins from microtubules. The dissociated tau then aggregates into sequent forms from soluble oligomers to paired helical filaments and insoluble neurofibrillary tangles (NFTs). NFTs is a hallmark of AD, while oligomers are found to be the most toxic form of the tau aggregates. Therefore, understanding tau oligomerization with regard to abnormal phosphorylation is important for the therapeutic development of AD. In this study, we investigated the impact of phosphorylated Ser289, one of the 40 aberrant phosphorylation sites of full-length tau proteins, on monomeric and dimeric structures of tau repeat R2 peptides. We carried out intensive replica exchange molecular dynamics simulation with a total simulation time of up to 0.1 ms. Our result showed that the phosphorylation significantly affected the structures of both the monomer and the dimer. For the monomer, the phosphorylation enhanced ordered-disordered structural transition and intramolecular interaction, leading to more compactness of the phosphorylated R2 compared to the wild-type one. As to the dimer, the phosphorylation increased intermolecular interaction and ß-sheet formation, which can accelerate the oligomerization of R2 peptides. This result suggests that the phosphorylation at Ser289 is likely to promote tau aggregation. We also observed a phosphorylated Ser289-Na+-phosphorylated Ser289 bridge in the phosphorylated R2 dimer, suggesting an important role of cation ions in tau aggregation. Our findings suggest that phosphorylation at Ser289 should be taken into account in the inhibitor screening of tau oligomerization.


Assuntos
Doença de Alzheimer , Proteínas tau , Humanos , Proteínas tau/metabolismo , Fosforilação , Doença de Alzheimer/metabolismo , Emaranhados Neurofibrilares/metabolismo , Peptídeos/metabolismo , Polímeros
12.
Biochem Biophys Res Commun ; 644: 155-161, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36652767

RESUMO

Denervated skeletal muscles show decreased Akt activity and phosphorylation, resulting in atrophy. Akt inhibits downstream transcription of atrophy-associated ubiquitin ligases like muscle ring-finger protein 1 (MuRF-1). In addition, reduced Akt signaling contributes to aberrant protein synthesis in muscles. In ALS mice, we recently found that carboxyl-terminator modulator protein (CTMP) expression is increased and correlated with reduced Akt signaling in atrophic skeletal muscle. CTMP has also been implicated in promoting muscle degeneration and catabolism in an in vitro muscle atrophy model. The present study examined whether sciatic nerve injury (SNI) stimulated CTMP expression in denervated skeletal muscle during muscle atrophy. We hypothesized that CTMP deficiency would reduce neurogenic atrophy and reverse Akt signaling downregulation. Compared to the unaffected contralateral muscle, wild-type (WT) gastrocnemius muscle had a significant increase in CTMP (p < 0.05). Furthermore, denervated CTMP knockout (CTMP-KO) gastrocnemius weighed more than WT muscle (p < 0.05). Denervated CTMP-KO gastrocnemius also showed higher Akt and downstream glycogen synthase kinase 3ß (GSK3ß) phosphorylation compared to WT muscle (p < 0.05) as well as ribosomal proteins S6 and 4E-BP1 phosphorylation (p < 0.001 and p < 0.05, respectively). Moreover, CTMP-KO mice showed significantly lower levels of E3 ubiquitin ligase MuRF-1 and myostatin than WT muscle (p < 0.05). Our findings suggest that CTMP is essential to muscle atrophy after denervation and it may act by reducing Akt signaling, protein synthesis, and increasing myocellular catabolism.


Assuntos
Atrofia Muscular , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , Denervação , Proteínas de Transporte/metabolismo , Palmitoil-CoA Hidrolase/metabolismo
13.
ACS Chem Neurosci ; 14(3): 458-467, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36669127

RESUMO

Phosphorylation, the most popular post-translational modification of tau protein, plays an important role in regulating tau physiological functions. However, aberrant phosphorylation attenuates the binding affinity of tau to a microtubule (MT), resulting in MT destabilization followed by accumulation of neurofibrillary tangles in the brain. There are in total 85 potential phosphorylation sites in a full-length tau protein, and about half of them are abnormal as they occur in tau of Alzheimer's disease (AD) brain only. In this work, we investigated the impact of abnormal Ser289, Ser293, and Ser289/Ser293 phosphorylation on tau R2-MT binding and the conformation of tau R2 using molecular dynamics simulation. We found that the phosphorylation significantly affected R2-MT interaction and reduced the binding affinity of tau R2 peptides to MTs. Free energy decomposition analysis suggested that the post-translational modified residues themselves made a significant contribution to destabilize tau repeat R2-MT binding. Therefore, the phosphorylation may attenuate the binding affinity of tau to MTs. Additionally, the phosphorylation also enhanced helix-coil transition of monomeric R2 peptides, which may result in the acceleration of tau aggregation. Since these phosphorylated sites have not been examined in previous experimental studies, our finding through all-atom molecular dynamics simulations and free energy analysis can inspire experimental scientists to investigate the impact of the phosphorylation on MT binding and aggregation of full-length tau and the pathological roles of the phosphorylation at those sites in AD development through in vitro/in vivo assays.


Assuntos
Doença de Alzheimer , Proteínas tau , Humanos , Proteínas tau/metabolismo , Fosforilação , Simulação de Dinâmica Molecular , Doença de Alzheimer/metabolismo , Microtúbulos/metabolismo , Peptídeos/metabolismo
14.
Clin Cancer Res ; 29(1): 261-270, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36260525

RESUMO

PURPOSE: Chordoma is a rare bone tumor with a high recurrence rate and limited treatment options. The aim of this study was to identify molecular subtypes of chordoma that may improve clinical management. EXPERIMENTAL DESIGN: We conducted RNA sequencing in 48 tumors from patients with Chinese skull-base chordoma and identified two major molecular subtypes. We then replicated the classification using a NanoString panel in 48 patients with chordoma from North America. RESULTS: Tumors in one subtype were more likely to have somatic mutations and reduced expression in chromatin remodeling genes, such as PBRM1 and SETD2, whereas the other subtype was characterized by the upregulation of genes in epithelial-mesenchymal transition and Sonic Hedgehog pathways. IHC staining of top differentially expressed genes between the two subtypes in 312 patients with Chinese chordoma with long-term follow-up data showed that the expression of some markers such as PTCH1 was significantly associated with survival outcomes. CONCLUSIONS: Our findings may improve the understanding of subtype-specific tumorigenesis of chordoma and inform clinical prognostication and targeted options.


Assuntos
Cordoma , Neoplasias da Base do Crânio , Humanos , Cordoma/genética , Cordoma/patologia , Proteínas Hedgehog/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Perfilação da Expressão Gênica , Neoplasias da Base do Crânio/genética , Neoplasias da Base do Crânio/patologia
15.
Metab Brain Dis ; 38(3): 945-960, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36484970

RESUMO

The altered expression of microRNA (miRNA) has been implicated in glioma. Here, the current study aimed to clarify the oncogenic effects of miR-19b-3p on cellular processes of glioma and to elucidate the underlying mechanism associated with SOCS3 and the JAK-STAT signaling pathway. Differentially expressed genes related to glioma were initially identified via microarray analysis. Twenty-five glioma patients were selected for clinical data collection, while additional 12 patients with traumatic brain injuries were selected as controls. Cell senescence was assessed by ß-galactosidase staining, proliferation by MTT assay and apoptosis by flow cytometry following gain- and/or loss-of-function of miR-19b-3p or SOCS3. Glioma xenograft mouse model was developed through subcutaneous injection to nude mice to provide evidence in vivo. The glioma patients exhibited overexpressed miR-19b-3p and poorly-expressed SOCS3. SOCS3 was identified as a target gene of miR-19b-3p through dual-luciferase reporter gene assay. miR-19b-3p repressed SOCS3 expression and activated the JAK-STAT signaling pathway. Furthermore, miR-19b-3p inhibition promoted apoptosis and senescence, and suppressed cell proliferation through inactivation of the JAK-STAT signaling pathway and up-regulation of SOCS3. The reported regulatory axis was validated in nude mice as evidenced by suppressed tumor growth. Taken together, this study demonstrates that miR-19b-3p facilitates glioma progression via activation of the JAK-STAT signaling pathway by targeting SOCS3, highlighting a novel therapeutic target for glioma treatment.


Assuntos
Glioma , MicroRNAs , Humanos , Animais , Camundongos , Janus Quinases/metabolismo , Camundongos Nus , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Glioma/genética , Apoptose , Proliferação de Células/genética , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
16.
Animals (Basel) ; 14(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38200771

RESUMO

It has been confirmed that improving the energy level of the diet contributed to the greater reproductive performance and birth weight of calves in periparturient dairy cows. To investigate the effect of glucose on nutrient transport during fetal development, the bovine placental trophoblast cells (BPTCs) were cultured in media with different glucose concentrations (1, 2, 4, 8, or 16 mg/mL). Subsequently, the BPTCs were cultured in media with 1, 8 mg/mL glucose and 8 mg/mL glucose plus 100 nmol/L rapamycin (the inhibitor of mTOR pathway). Compared with the 1 mg/mL glucose, the addition of 8 mg/mL glucose stimulated cell proliferation, upregulated the mRNA abundance of the glucose transporter GLUT1 and GLUT4, and increased the activity of glucose metabolism-related enzyme glucose-6-phosphate dehydrogenease (G6PD), lactate dehydrogenase (LDHA) and phosphoglycerate kinase 1 (PGK1), as well as adenosine-triphosphate (ATP) content (p < 0.05).Furthermore, compared with the treatment of 1 mg/mL glucose, adding 8 mg/mL of glucose-upregulated gene expression in the mTOR signaling pathway, including phosphatidylinositol3-kinase (PI3K), protein kinase B (Akt), mammalian target of rapamycin (mTOR) and 70 kDa ribosomal protein S6 kinase 2 (P70S6K) (p < 0.05).The supplementation of rapamycin downregulated the gene and protein expression of the mTOR signaling pathway, including mTOR, P70S6K, EIF4E-binding protein 1 (4EBP1), hypoxia-inducible factor 1-alpha (HIF-1α) and gene expression of glucose transporter upregulated by 8 mg/mL glucose (p < 0.05). Thus, these results indicated that the addition of 8 mg/mL glucose regulated the glucose transport and metabolism in BPTCs through the mTOR signaling pathway, thereby promoting the supply of nutrients to fetus.

17.
Mater Today (Kidlington) ; 62: 33-50, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239407

RESUMO

STING agonist has recently gained much attention for cancer treatment, but the therapeutic potential of STING agonist is hampered by STING-associated tumor immune resistance. In this work, guided by both bioinformatics and computer modeling, we rationally designed a "one stone hits two birds" nanoparticle-based strategy to simultaneously activate STING innate immune response while eliminating STING-associated immune resistance for the treatment of pancreatic ductal adenocarcinoma (PDAC). We discovered that the ultra-small sized micellar system based on gemcitabine-conjugated polymer (PGEM), which showed superior capacity of penetration in pancreatic tumor spheroid model and orthotopic tumor model, could serve as a novel "STING agonist". The activation of STING signaling in dendritic cells (DCs) by PGEM increased both innate nature killer (NK) and adaptive anti-tumor T cell response. However, activation of STING signaling by PGEM in tumor cells also drove the induction of chemokines CCL2 and CCL7, resulting in immune resistance by recruiting tumor associated macrophage (TAM) and myeloid-derived suppressor cells (MDSCs). Through the combination of computer modeling and experimental screening, we developed a dual delivery modality by incorporating a CCR2 (the receptor shared by both CCL2 and CCL7) antagonist PF-6309 (PF) into PGEM micellar system. Our studies demonstrated that PGEM/PF formulation significantly reduced pancreatic tumor burden and induced potent anti-tumor immunity through reversing the CCL2/CCL7-mediated immunosuppression. Moreover, PGEM/PF sensitized PDAC tumors to anti-PD-1 therapy, leading to complete suppression/eradication of the tumors. Our work has shed light to the multi-faceted role of STING activation and provided a novel immunotherapy regimen to maximize the benefit of STING activation for PDAC treatment. In addition, this work paved a new way for bioinformatics and computer modeling-guided rational design of nanomedicine.

18.
iScience ; 25(12): 105681, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36536675

RESUMO

The overall survival rate of gliomas has not significantly improved despite new effective treatments, mainly due to tumor heterogeneity and drug delivery. Here, we perform an integrated clinic-genomic analysis of 1, 477 glioma patients from a Chinese cohort and a TCGA cohort and propose a potential prognostic model for gliomas. We identify that SBS11 and SBS23 mutational signatures are associated with glioma recurrence and indicate worse prognosis only in low-grade type of gliomas and IDH-Mut subtype. We also identify 42 genomic features associated with distinct clinical outcome and successfully used ten of these to develop a prognostic risk model of gliomas. The high-risk glioma patients with shortened survival were characterized by high level of frequent copy number alterations including PTEN, CDKN2A/B deletion, EGFR amplification, less IDH1 or CIC gene mutations, high infiltration levels of immunosuppressive cells and activation of G2M checkpoint and Oxidative phosphorylation oncogenic pathway.

19.
J Chem Phys ; 157(22): 225102, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36546791

RESUMO

It has been widely accepted that cancer cells are softer than their normal counterparts. This motivates us to propose, as a proof-of-concept, a method for the efficient delivery of therapeutic agents into cancer cells, while normal cells are less affected. The basic idea of this method is to use a water jet generated by the collapse of the bubble under shockwaves to perforate pores in the cell membrane. Given a combination of shockwave and bubble parameters, the cancer membrane is more susceptible to bending, stretching, and perforating than the normal membrane because the bending modulus of the cancer cell membrane is smaller than that of the normal cell membrane. Therefore, the therapeutic agent delivery into cancer cells is easier than in normal cells. Adopting two well-studied models of the normal and cancer membranes, we perform shockwave induced bubble collapse molecular dynamics simulations to investigate the difference in the response of two membranes over a range of shockwave impulse 15-30 mPa s and bubble diameter 4-10 nm. The simulation shows that the presence of bubbles is essential for generating a water jet, which is required for perforation; otherwise, pores are not formed. Given a set of shockwave impulse and bubble parameters, the pore area in the cancer membrane is always larger than that in the normal membrane. However, a too strong shockwave and/or too large bubble results in too fast disruption of membranes, and pore areas are similar between two membrane types. The pore closure time in the cancer membrane is slower than that in the normal membrane. The implications of our results for applications in real cells are discussed in some details. Our simulation may be useful for encouraging future experimental work on novel approaches for cancer treatment.


Assuntos
Simulação de Dinâmica Molecular , Neoplasias , Membrana Celular , Membranas , Água
20.
BMC Gastroenterol ; 22(1): 476, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36411404

RESUMO

BACKGROUND: It has not yet been determined whether gastroscopy and colonoscopy screening help patients with gallbladder diseases. We aim to retrospectively investigate the relationship between gallbladder diseases and gastrointestinal polyps in order to provide a theoretical basis for the early screening of gastrointestinal polyps in patients with gallbladder disease. METHODS: This is a retrospective cross-sectional study involving 1662 patients who underwent gastroscopy, colonoscopy, and abdominal ultrasound as part of their health check-up from January 2015 to July 2020. We also compared the patients with and without gallbladder diseases to determine the prevalence of gastrointestinal polyps. RESULTS: Patients with gallbladder polyps had greater odds of having colorectal polyps (adjusted odds ratio (OR)=1.77, 95% confidence interval [Cl]: 1.23 to 2.54, p=0.002) and gastric plus colorectal polyps (adjusted OR=2.94, 95%Cl: 1.62 to 5.32, p<0.001) than those without. Patients with multiple gallbladder polyps had greater odds of having colorectal polyps (adjusted OR=2.33, 95% CI: 1.33 to 4.07, p=0.003) and gastric plus colorectal polyps (adjusted OR=3.95, 95% CI: 1.72 to 9.11, p=0.001), and patients with gallbladder polyps had greater odds of having left-colon polyps (adjusted OR=1.90, 95% CI: 1.25 to 2.88, p=0.003) and colorectal adenoma (adjusted OR=1.78, 95% CI: 1.19 to 2.66, p=0.005). We also noted that women with gallbladder polyps had a higher prevalence of colorectal polyps (OR=2.13, 95% CI: 1.20 to 3.77, p=0.010) and gastric plus colorectal polyps (OR=3.69, 95% CI: 1.58 to 8.62, p=0.003). However, no positive correlation was observed between gallbladder stones and gastrointestinal polyps. CONCLUSIONS: Gallbladder polyps are significant indicators of colorectal and gastric plus colorectal polyps. Hence, gastroscopy and colonoscopy screening should be performed for patients with gallbladder polyps, particularly female patients and those with multiple gallbladder polyps.


Assuntos
Pólipos do Colo , Neoplasias Colorretais , Doenças da Vesícula Biliar , Neoplasias Gastrointestinais , Feminino , Humanos , Pólipos do Colo/diagnóstico , Estudos Retrospectivos , Estudos Transversais , Doenças da Vesícula Biliar/diagnóstico por imagem , Doenças da Vesícula Biliar/epidemiologia , Doenças da Vesícula Biliar/complicações , Neoplasias Gastrointestinais/complicações , Neoplasias Colorretais/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA